
Resources for Software Testing 
 

Unit Testing 

• VSCode supports JUnit 4/5 for testing in Java and this is the official tutorial link: Java 
Testing in Visual Studio Code 

• pytest is the recommended Python framework for unit testing and the 
corresponding official tutorial: Testing Python in Visual Studio Code 

API Testing 

Use Postman and Postbot (by Postman): Introducing Postbot, Postman’s New AI Assistant 
| Postman Blog 

Functional Testing 

Integration Testing (Black-box) 

• Selenium (Chrome) Webdrivers for testing webpages whether you are using Java or 
Python. 

o Setup Instructions for Java:  Setup Selenium with Java on Visual Studio Code 
- Funnel Garden and Selenium with VS Code. This article will describe how to 
set… | by Harshi Wickramaarachchi | Medium (Free articles available as of 
writing)  

o Setup and Guide for Python: Selenium Python Tutorial (with Example) | 
BrowserStack and Selenium Python Tutorial : A Python Automation Testing 
Guide with examples (lambdatest.com) (Free as of writing) 

Regression Testing (White-Box) 
If using React for the frontend, one can use Jest to perform Snapshot testing for easily 
tracking UI changes or regressions and quickly detecting major changes in a 
website’s/component’s behaviour, refer this guide for more details: Snapshot Testing · Jest 
(jestjs.io) 

Performance Testing (Black-Box) 
• Apache JMeter ( Apache JMeter - Apache JMeter™ ) is the most common software 

used for load and performance testing HTTP based Applications and is even used 

https://code.visualstudio.com/docs/java/java-testing
https://code.visualstudio.com/docs/java/java-testing
https://code.visualstudio.com/docs/python/testing
https://blog.postman.com/introducing-postbot-postmans-new-ai-assistant/
https://blog.postman.com/introducing-postbot-postmans-new-ai-assistant/
https://funnelgarden.com/setup-selenium-with-java-on-visual-studio-code/
https://funnelgarden.com/setup-selenium-with-java-on-visual-studio-code/
https://medium.com/@wwharshi/selenium-with-vs-code-ee47aaa443d5
https://medium.com/@wwharshi/selenium-with-vs-code-ee47aaa443d5
https://www.browserstack.com/guide/python-selenium-to-run-web-automation-test
https://www.browserstack.com/guide/python-selenium-to-run-web-automation-test
https://www.lambdatest.com/blog/getting-started-with-selenium-python/
https://www.lambdatest.com/blog/getting-started-with-selenium-python/
https://jestjs.io/docs/snapshot-testing
https://jestjs.io/docs/snapshot-testing
https://jmeter.apache.org/


for testing things like JDBC (for Databases), CLI Tools, SMTP (Email), Java Objects 
etc. 

o In case one wants to dive deep and get started, here is the official user 
manual: Apache JMeter - User's Manual 

• There are also attempts to port the concept into Python using packages like 
pymeter (Welcome to pymeter’s documentation! — pymeter Documentation 
(1.0.x))  

• (Companies / the industry likely has its own wrappers/setups/configs around JMeter 
– For example BlazeMeter Load Testing | Blazemeter by Perforce ) 

Code Coverage (White-Box) 

• For Java, JaCoCo measures code coverage in the form of # of instructions 
(equivalent to statement coverage) and # of branches (branch coverage) -  

o Configuration instructions: Using the <plugins>...</plugins> part from 
jacoco.org/jacoco/trunk/doc/examples/build/pom.xml for unit test coverage 
and jacoco.org/jacoco/trunk/doc/examples/build/pom-it.xml for integration 
test coverage. 

o Alternatively, adapt this answer: https://stackoverflow.com/a/25485301 and 
tweak the version numbers. A quick tutorial for usage: How to generate Code 
Coverage Report using Jacoco in a Java application | Codementor 

o A sample report of their own repo is found here: 
https://www.jacoco.org/jacoco/trunk/coverage/  

• For Python, the packages used are pytest-cov and coverage (pytest-cov 5.0.0 
documentation and Coverage.py — Coverage.py 7.6.1 documentation) and 
example usage are given here: How to Generate pytest Code Coverage Report | 
LambdaTest (The default options provide only statement coverage, but there is an 
option --cov-branch to calculate and display branch coverage as well. 

Additional AI-Enhanced Testing Tools 

• GitHub Copilot for code generation during testing: Use GitHub Copilot to 
automatically generate unit and integration tests. Video tutorials available on the 
class website. 

• Codeium and GPT-4o for enhancing testing scripts and automating test case 
generation, especially useful for complex testing scenarios in whitebox testing. 

• GPT-4o: Capable of generating complex test scenarios based on the description of 
software functionalities. Supports multiple languages and frameworks, enhancing 
the versatility in test generation. 

https://jmeter.apache.org/usermanual/index.html
https://pymeter.readthedocs.io/en/latest/index.html
https://pymeter.readthedocs.io/en/latest/index.html
https://www.blazemeter.com/product/blazemeter/load-testing
https://www.jacoco.org/jacoco/trunk/doc/examples/build/pom.xml
https://www.jacoco.org/jacoco/trunk/doc/examples/build/pom-it.xml
https://stackoverflow.com/a/25485301
https://www.codementor.io/@noelkamphoa/how-to-generate-code-coverage-report-using-jacoco-in-a-java-application-2a3at1ts4l
https://www.codementor.io/@noelkamphoa/how-to-generate-code-coverage-report-using-jacoco-in-a-java-application-2a3at1ts4l
https://www.jacoco.org/jacoco/trunk/coverage/
https://pytest-cov.readthedocs.io/en/latest/index.html
https://pytest-cov.readthedocs.io/en/latest/index.html
https://coverage.readthedocs.io/en/7.6.1/index.html
https://www.lambdatest.com/blog/pytest-code-coverage-report/
https://www.lambdatest.com/blog/pytest-code-coverage-report/


• Testim: Employs AI to speed up the creation, execution, and maintenance of 
automated tests. Useful for regression and functional testing, particularly in 
dynamic and complex web applications. 

• Applitools: Uses Visual AI to automatically validate the appearance of UI elements 
across different screens and operating systems. Helps catch visual regressions and 
UI bugs that are difficult to detect with traditional testing tools. 

• Postman’s Postbot: An AI assistant within Postman that can write and run tests 
based on user conversations about the intended functionality of APIs. Enhances API 
testing by generating assertive tests that adapt to changes in API responses. 

• ReTest (AI-enhanced GUI testing tool): Utilizes AI to learn the correct behavior of 
the application under test by monitoring user interactions. Automatically generates 
regression tests and highlights deviations from expected GUI behavior. 

• Mabl: Provides an end-to-end test automation service using machine learning to 
auto-heal tests when the application under test evolves. Facilitates integration 
testing and browser testing, reducing the manual effort in maintaining test suites. 

Industry Tools and Practices 
• SonarQube for in-depth code quality analysis: Commonly used in industry for 

continuous inspection of code quality to perform automatic reviews with static 
analysis of code to detect bugs, code smells, and security vulnerabilities. 

o Setup with GCP: Instructions included on class website for setting up 
SonarQube on a GCP VM. Setup instructions are borrowed from CS2340. 

 


	Resources for Software Testing
	API Testing
	Functional Testing
	Integration Testing (Black-box)
	Regression Testing (White-Box)

	Performance Testing (Black-Box)
	Code Coverage (White-Box)
	Additional AI-Enhanced Testing Tools
	Industry Tools and Practices


